Integral Turbulent Length and Time Scales in Hydraulic Jumps: an Experimental Investigation at Large Reynolds Numbers

نویسندگان

  • HANG WANG
  • HUBERT CHANSON
چکیده

A hydraulic jump is a rapidly-varied open channel flow characterised by the sudden transition from a supercritical flow motion to a subcritical regime. The transition is associated with a rapid increase of water depth, a highly turbulent flow with macro-scale vortices, significant kinetic energy dissipation, a two-phase flow region and some strong turbulence interactions with the free surface leading to splashes and droplet projection. The phenomenon is not a truly random turbulent process because of the existence of low-frequency, pseudo-periodic coherent structures and fluctuating motion in the jump roller. This study presents new measurements of turbulent air-water flow properties in hydraulic jumps, including turbulence intensity, longitudinal and transverse integral length and time scales, for a range of Froude numbers (3.8 < Fr1 < 8.5) at large Reynolds numbers (3×10 < Re < 2×10). The results showed a combination of both fast and slow turbulent components. The respective contributions of the fast and slow motions were quantified using a novel triple decomposition technique. The results highlighted the 'true' turbulent characteristics linked to the fast, microscopic velocity turbulence of hydraulic jumps, while showing that slow-fluctuation turbulence intensity was a significant contribution to the total. The high-frequency advection length scale and integral turbulent length scale exhibited some maxima in the lower shear flow next to the invert. The turbulent length scales decreased along the roller as the fast turbulence was dissipated. Comparison between the longitudinal advection and integral length scales indicated that the advection and diffusion were not independent processes in the flow region immediately downstream of the jump toe. The impact of slow fluctuations was large in the free-surface region and relatively smaller in the lower shear flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local dissipation scales in turbulent jets

This paper reports an experimental investigation of the characteristics of local dissipation length-scale field  in turbulent (round and square) jets with various jet-exit Reynolds numbers. Results reveal that the probability density function (PDF) of , denoted by Q(), in the central fully-turbulent region, is insensitive to initial flow conditions and the departure from anisotropy. Excellen...

متن کامل

Hydraulic jumps: turbulence and air bubble entrainment

-A free-surface flow can change from a supercritical to subcritical flow with a strong dissipative phenomenon called a hydraulic jump. Herein the progress and development in turbulent hydraulic jumps are reviewed with a focus on hydraulic jumps operating at large Reynolds numbers typically encountered in natural streams and hydraulic structures. The key features of the turbulent hydraulic jumps...

متن کامل

Investigation of the thermo-hydraulic behavior of the fluid flow over a square ribbed channel

The thermo-hydraulic behavior of the air flow over a two dimensional ribbed channel wasnumerically investigated in various rib-width ratio configurations (B/H=0.5-1.75) atdifferent Reynolds numbers, ranging from 6000 to 18000. The capability of differentturbulence models, including standard k-ε, RNG k-ε, standard k-ω, and SST k-ω, inpredicting the heat transfer rate was compared with the experi...

متن کامل

Numerical Study of Reynolds Number Effects on Flow over a Wall-Mounted Cube in a Channel Using LES

Turbulent flow over wall-mounted cube in a channel was investigated numerically using Large Eddy Simulation. The Selective Structure Function model was used to determine eddy viscosity that appeared in the subgrid scale stress terms in momentum equations. Studies were carried out for the flows with Reynolds number ranging from 1000 to 40000. To evaluate the computational results, data was compa...

متن کامل

Unsteady Turbulence in a Shock: Physical and Numerical Modelling in Tidal Bores and Hydraulic Jumps

A turbulent flow is characterised by an unpredictable behaviour, a broad spectrum of length and time scales, and its strong mixing properties. Turbulent flows have a great mixing potential involving a wide range of vortical length scales. In steady flows, the turbulence measurements must be conducted at high frequency to resolve the small eddies and the viscous dissipation process. They must al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015